Using Visible Spectral Information to Predict Long-Wave Infrared Spectral Emissivity: A Case Study over the Sokolov Area of the Czech Republic with an Airborne Hyperspectral Scanner Sensor
نویسندگان
چکیده
Remote-sensing platforms are often comprised of a cluster of different spectral range detectors or sensors to benefit from the spectral identification capabilities of each range. Missing data from these platforms, caused by problematic weather conditions, such as clouds, sensor failure, low temporal coverage or a narrow field of view (FOV), is one of the problems preventing proper monitoring of the Earth. One of the possible solutions is predicting a detector or sensor’s missing data using another detector/sensor. In this paper, we propose a new method of predicting spectral emissivity in the long-wave infrared (LWIR) spectral region using the visible (VIS) spectral region. The proposed method is suitable for two main scenarios of missing data: sensor malfunctions and narrow FOV. We demonstrate the usefulness and limitations of this prediction scheme using the airborne hyperspectral scanner (AHS) sensor, which consists of both VIS and LWIR spectral regions, in a case study over the Sokolov area, Czech Republic.
منابع مشابه
Integration of Absorption Feature Information from Visible to Longwave Infrared Spectral Ranges for Mineral Mapping
Merging hyperspectral data from optical and thermal ranges allows a wider variety of minerals to be mapped and thus allows lithology to be mapped in a more complex way. In contrast, in most of the studies that have taken advantage of the data from the visible (VIS), near-infrared (NIR), shortwave infrared (SWIR) and longwave infrared (LWIR) spectral ranges, these different spectral ranges were ...
متن کاملThermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview
The AHS (Airborne Hyperspectral Scanner) instrument has 80 spectral bands covering the visible and near infrared (VNIR), short wave infrared (SWIR), mid infrared (MIR) and thermal infrared (TIR) spectral range. The instrument is operated by Instituto Nacional de Técnica Aerospacial (INTA), and it has been involved in several field campaigns since 2004. This paper presents an overview of the wor...
متن کاملAIRBORNE HYPERSPECTRAL SCANNER (AHS) SPECTRAL EMISSIVITY RETRIEVAL IN 8-13 μm
Multispectral and hyperspectral thermal sensors can use spectral emissivities for mapping surface elements that show wavelength emission differences (typically minerals). The Airborne Hyperspectral Scanner (AHS) is a VIS to TIR 80 band line-scanner which collects 10 bands in the 8 to 12 μm atmospheric window, with 0.4 μm bandwidth. Multichannel temperature-emissivity separation published method...
متن کاملSpatial-Spectral-Emissivity Land-Cover Classification Fusing Visible and Thermal Infrared Hyperspectral Imagery
High-resolution visible remote sensing imagery and thermal infrared hyperspectral imagery are potential data sources for land-cover classification. In this paper, in order to make full use of these two types of imagery, a spatial-spectral-emissivity land-cover classification method based on the fusion of visible and thermal infrared hyperspectral imagery is proposed, namely, SSECRF (spatial-spe...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013